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Life expectancy (LE) continues to rise dramatically, as reinforced by the latest 
Global Burden of Disease Study statistics published in December 2012 in The 
Lancet (Table 1).1 Between 1970 and 2010, LE increased in 179 of the 187 

countries included, with LE at birth increasing 3 to 4 years per decade since 1970. 

Table 1: Worldwide Life Expectancy Data for Males and Females 1970-20101  

Male Life Expectancy Female Life Expectancy
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

World 56.4

(55.5-57.2)

59.8

(59.2-60.2)

62.8

(62.3-63.3)

64.2

(63.6-64.6)

67.5

(66.9-68.1)

61.2

(60.2-62.0)

64.9

(64.3-65.4)

68.1

(67.6-68.6)

69.8

(69.3-70.2)

73.3

(72.8-73.8)

Source: Wang H et al. Age-specific and sex-specific mortality in 187 countries, 1970-2010: a systematic 
analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2071-2094. Reprinted by 
permission of Elsevier.

However, this apparent public health success story in increased LE is not matched 
by an increase in healthy life expectancy (HLE), with an estimated 0.8-year 
increase in HLE for every 1-year increase in LE. Therefore, although individuals are 
living longer, they are sicker for longer. This is very apparent when looking at US 
statistics, with increases of 4.2 years and 2.7 years in LE and HLE, respectively, in 
males between 1990 and 2010.2

Given the almost exponential association between age and cognitive decline, 
these aging population demographics are having dramatic impacts on dementia 
incidence worldwide, with the prevalence approximately doubling every 20 years 
and estimated to increase to 115 million by 2050.3 

Existing drugs for Alzheimer’s disease (AD), the most common form of dementia, 
do provide medium-term symptomatic benefits, but currently no approved disease-
modifying therapies are available.4 Given the “explosion” in dementia incidence and 
the recent high-profile failures of various novel disease-modifying drugs in clinical 
trials, the development of effective lifestyle strategies to preserve cognition would 
prove extremely timely, providing enormous health, social, and economic benefits. 

Data that allow an estimation of the public health impact of delayed disease onset 
in the area of dementia and AD are notably absent. However, available data suggest 
that at a population level, a modest 2-year delay in onset would reduce population 
incidence by 22% by 2050, resulting in 25 million fewer cases worldwide.5 The 
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public health benefits are possibly even greater if effective lifestyle strategies are 
targeted at high-risk individuals, such as those with mild cognitive impairment (MCI) 
or an apolipoprotein E4 (APOE-ε4) genotype.  

Omega-3 Fatty Acids and Cognitive Health
The cardiovascular benefits of the omega-3 fatty acids found in fish, namely 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are well established. 
Typical current population recommendations of an intake of >0.5 g/day of 
EPA+DHA, increasing to >1 g/day in individuals with diagnosed cardiovascular 
disease, are based largely on these known benefits to the heart and systemic 
circulation. The brain is highly enriched in DHA, constituting 15% to 25% of total 
fatty acids, compared to <5% in most other body tissues. DHA performs numerous 
structural and metabolic roles, particularly at the neuronal synaptic region. 

Although data from “fit-for-purpose” human randomized controlled trials (RCTs) 
are currently limited in the area of cognitive health, a relatively large body of 
animal and human cross-sectional and prospective data demonstrates that low 
dietary fish intake (EPA and DHA), and resultant low omega-3 fatty acid status, 
are associated with neurocognitive dysfunction and a greater risk of cognitive 
decline and dementia.6-8 

For example, in the Framingham Cohort, individuals in the top quartile of plasma 
DHA had a 47% reduced risk of developing dementia, compared to those in the 
bottom quartile.7 In addition, lower plasma and red blood cell EPA and DHA levels 
are associated with smaller brain volumes and atrophy of regions associated with 
dementia, such as the medial temporal lobe.9,10 

Findings from available RCTs are somewhat mixed, but they suggest the greatest 
benefit of fish oil (EPA+DHA) or DHA supplementation in individuals with MCI but 
without a clinical diagnosis of AD.11 The lack of efficacy in the largest published 
RCT (UK-based Older People and n-3 Long-Chain Polyunsaturated Fatty Acids 
Study [OPAL] 2-year intervention, n=867) may be partly because of the inclusion 
of regular fish consumers, with 92% of participants consuming fish ≥1 serving/
week.12 This pattern of fish consumption is atypical for a UK population, resulting 
in the overrepresentation of regular fish consumers. For these individuals, habitual 
omega-3 intake is perhaps close to optimal, making it difficult to achieve further 
benefits because the intervention dose was modest (700 mg/day). 
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Well-powered human RCTs that use sensitive state-of-the-art measures of cognitive 
function and brain imaging to assess efficacy are greatly needed in individuals with 
a low habitual EPA/DHA intake and compromised EPA/DHA status (majority of UK 
and US adults). These are the individuals most likely to respond and benefit. 

APOE Genotype and Cognitive Health
Originally described for its role in lipid transport (it is the almost exclusive lipid 
transporter in the brain and central nervous system), apolipoprotein E (apoE) is 
pleiotropic. Its role in brain and neuronal function is summarized in the  
following Figure. 
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Figure. Role of apoE in neuronal function. 

Aβ=amyloid beta, apoE=apolipoprotein E

APOE-ε4 genotype is a highly significant genetic risk factor for AD, increasing risk 
≈4- and 15-fold in carriers of either a single (20% to 25% Caucasians) or double 
(1% to 2% Caucasians) copy of the risk allele, compared to APOE-ε3 homozygotes 
(Table 2).13 Importantly, an APOE-ε4 genotype is associated with a 2-fold higher 
conversion rate from MCI to AD14,15 and an earlier age of AD onset.16 Therefore, 
in an era of a gradual move toward the provision of stratified preventative and 
therapeutic targets based on genetic make-up,17 APOE-ε4 carriers represent a large 
population subgroup that would particularly benefit from targeted strategies that 
may prevent or delay disease onset. 
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Table 2. Impact of APOE genotype on Alzheimer’s Disease Incidence13   
(data presented as odds ratios (ORs) with 95% confidence intervals (CI) in parentheses)  

Study ε3ε4 vs ε3ε3

(95% CI)

ε4ε4 vs ε3ε3

(95% CI)

ε2ε3 vs ε3ε3

(95% CI)

ε4 vs ε3

(95% CI)

Total sample size

(number of independent samples)

Farrer et al18,a,b

Caucasian, 
clinic/autopsy

3.2

(2.8-3.8)

14.9

(10.8-20.6)

0.6

(0.5-0.8)
Not reported

6305

(31)

Caucasian, 
population-based

2.7

(2.2-3.2)

12.5

(8.8-17.7)

0.6

(0.5-0.9)
Not reported

4858

(10)

Asian (Japan)
5.6

(3.9-8.0)

33.1

(13.6-80.5)

0.9

(0.4-2.5)
Not reported

2313

(5)

AlzGenec

Caucasian, 
clinic/autopsy

4.3 (3.3-5.5)

P<1 x 10-16

15.6 (10.9-22.5)

P<1 x 10-16

0.6 (0.3-1.2)

P=0.1

4.1 (3.5-4.8)

P<1 x 10-16

4946

(20)

Caucasian, 
population-based

2.8 (2.3-3.5)

P<1 x 10-16

11.8 (7.0-19.8)

P<1 x 10-16

0.3 (0.2-0.6)

P=4.6 x 10-7

3.2 (2.7-3.8)

P<1 x 10-16

2866

(8)

Asian (Japan)
3.9 (1.9-8.0)

P=0.0002

21.8 (8.6-55.3)

P=1.1 x 10-16

0.7 (0.3-1.6)

P=0.3

4.0 (2.9-5.5)

P=1.1 x 10-16

1541

(4)

aBased on pooled genotypes and adjusted for age and study. ORs and total sample sizes are taken from 
Table 3 of Farrer et al18 and the number of independent samples from Table 1 of Farrer et al.18 

bP values were not reported for the effect size estimates in Farrer et al.18

cBased on study-specific crude ORs, using random-effects models on published genotypes only. Studies, 
choice of ethnic group, and ascertainment scheme are based on information provided in Farrer et al.18 

Source: Bertram L et al. Systematic meta-analysis of Alzheimer disease genetic association studies: the 
AlzGene database. Nat Genet. 2007;39(1):17-23. Reprinted by permission of Nature Publishing Group.

The Road Ahead: Nonreductionist Approach  
to Cognitive Health
Traditionally the reductionist approach in nutrition research has focused on 
establishing the impact of individual foods, food groups, or dietary components 
on specific health end points. Because the neural processes involved in cognitive 
health and decline are complex, a combination of nutritional compounds may 
prove most efficacious. However, few studies have adapted this approach. As 
recently reviewed,19 accumulating knowledge on the physiological and molecular 
targets for individual dietary constituents provides strong justification for the 
cosupplementation of a number of components, which individually may have only 
modest benefits.  
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